WYTWARZANIE NOWEJ GENERACJI KATALIZATORÓW METODAMI NANOTECHNOLOGII

Jerzy STRASZKO, Urszula GABRIEL i Wiesław PARUS Zachodniopomorski Uniwersytet Technologiczny, al. Piastów 42, 71-065 Szczecin urszula.gabriel@zut.edu.pl

STRESZCZENIE

Przedstawiono sposób wytwarzania metodą zol-żel katalizatorów V₂O₅/TiO₂; MoO₃/TiO₂ i (V₂O₅+MoO₃)/TiO₂. Jako prekursor stosowano Ti(OC₂H₅)₄. Próbki po hydrolizie Ti(OC₂H₅)₄ suszono w 100°C i kalcynowano w powietrzu w 400°C przez 3 h. Przebieg kalcynacji rozpatrzono na podstawie pomiarów termograwimetrycznych. Fazy próbek stałych identyfikowano metodą XRD, a wielkość cząstek oceniano metodą SEM. Badano aktywność katalizatorów w procesie selektywnej redukcji NO_x i w procesie spalania wybranych związków organicznych. Do zastosowania, w procesie selektywnej redukcji NO_x, zaproponowano katalizator (8%V₂O₅+ 2%MoO₃)/TiO₂, a w procesie spalania związków organicznych katalizatory: 8%V₂O₅/TiO₂, 10%V₂O₅/TiO₂, 8%MoO₃/TiO₂ i 10%MoO₃/TiO₂. Katalizatory te pracują skutecznie przy obciążeniu gazem 40-100 m³/kg, w temperaturze poniżej 300°C.

1. Wstęp

W katalizie heterogenicznej rozmiary nanometryczne cząstek i struktur porowatych mają zasadnicze znaczenie. Należy ona do dyscyplin naukowych i technicznych gdzie od dawna są stosowane materiały o rozmiarach nanometrycznych. Postęp osiągnięty w badaniach i zastosowaniu nanomateriałów w innych dziedzinach stwarza możliwość wytwarzania nowej generacji katalizatorów w ogóle, a dla potrzeb ochrony powietrza w szczególności. W tej pracy przedstawiono te zagadnienia na przykładzie katalizatorów wanadowych, molibdenowych oraz wanadowo-molibdenowych, osadzonych na TiO₂ (anataz). Są one aktywne w procesach spalania wybranych związków organicznych i selektywnej redukcji NO_x .

Problemy dotyczące uciążliwości dla środowiska tlenków azotu zostały omówione w pracy [1]. Kluczowe znaczenie dla ograniczenia emisji NO_x ma metoda selektywnej katalitycznej redukcji. W licznych publikacjach są prezentowane zagadnienia dotyczące badań podstawowych i technologicznych tego procesu. Podajemy kilka przykładów. W patencie europejskim 0214 085 A1 (05. 08. 86) opisano metodę otrzymywania katalizatorów z zastosowaniem jako nośników TiO₂ i SiO₂. Masę aktywną stanowiły V₂O₅, MoO₃ i WO₃. Katalizatory te pracowały przy obciążeniach rzędu 30000 h⁻¹, w zakresie temperatury 300-500°C. W patencie europejskim 0219 853 A2 (21.10. 86) podano sposób wytwarzania katalizatorów o strukturze zeolitów. Czynnikami aktywnymi były TiO₂, V₂O₅, MoO₃ oraz ich mieszaniny. Katalizatory te pracowały skutecznie w temperaturze 350°C, przy niskich obciążeniach. Zachowywały aktywność w obecności SO₂. W patencie europejskim 0345 695 A2 (03.06. 89) przedstawiono metodę otrzymywania także katalizatorów do selektywnej redukcji NO_x, z zastosowaniem V₂O₅ i MoO₃. Składniki aktywne osadzano na TiO₂ i SiO₂. Katalizatory te pracowały skutecznie w temperaturze 350°C, przy niskim obciążeniu gazem. W pracy [2] przedstawiono sposób wytwarzania i formowania katalizatorów (V₂O₅-

 MoO_3)/TiO₂. W procesie selektywnej redukcji NO_x pracowały one przy obciążeniach 36000-200 000 h⁻¹, w zakresie temperatur 180-400°C (stopień przemiany NO_x > 0.99).

Metodami nanotechnologii katalizatory są wytwarzane od niedawna. Postęp prac w tym zakresie można ocenić na podstawie materiałów konferencyjnych [3,4]. Najczęściej stosuje się metodę zol-żel. W pracy [5] podano podstawy tej metody, a w pracach [6,7] opisano aparaty i techniki analityczne używane podczas badań układów nanometrycznych. Sposób otrzymywania techniką zol-żel tlenków wybranych metali przejściowych oraz SiO₂ zamieszczono w materiałach opracowanych przez wykonawców programu badawczego Multiprotect. [8]. Metoda zol-żel była stosowana podczas wytwarzania katalizatorów procesu spalania związków organicznych. W pracy [9] w ten sposób otrzymywano katalizatory zawierające tlenek miedzi (spalano toluen), a w pracy [10] katalizator Pt/γ -Al₂O₃. Był on bardziej stabilny niż katalizatory platynowe uzyskane metodą impregnacji.

2. Część doświadczalna

2.1. Materiały i metody

Jako prekursory stosowano Ti(OC₂H₅)₄ o czystości \ge 98%, firmy Aldrich; (NH₄)₆Mo₇O₂₄4H₂O o czystości \ge 94% firmy Fluka; TiO₂ (anataz) o czystości \ge 98% firmy Aldrich; V₂O₅ czda firmy POCH SA.; NH₄OH czda firmy POCH SA i suche powietrze klasy 5.0 firmy Messer (Niemcy). Pomiary termograwimetryczne wykonano na aparacie SDT Q600 firmy TA. Produkty gazowe identyfikowano metodą spektrometrii mas, na aparacie Thermostar GSD 301 typ Pfeifer Vacum. Fazy próbek stałych określano metodą XRD, na aparacie Philips X Pert z lampą miedziową. Fazy identyfikowano stosując program komputerowy X Pert HighScore 1.0 z wbudowaną kartoteką wzorców ICDD. Mikroobrazy cząstek nośników i katalizatorów wykonano metodą SEM na aparacie firmy JOEL JMS 6100. Aktywność katalizatorów w procesie selektywnej katalitycznej redukcji NO_x i spalania wybranych związków organicznych wyznaczono stosując przepływowy reaktor rurowy [2]. Masa katalizatora była równa 0,5 g, a obciążenie gazami wynosiło 40-100 m³/(kg h).

2.2. Wytwarzanie katalizatorów

Katalizatory wytwarzano metodą zol-żel [5, 8]. Pierwszym etapem jest homogenizacja mieszanin, drugim hydroliza Ti(OC₂H₅)₄, z udziałem katalizatora (kwas, bądź zasada, np. NH₄OH), a trzecim kondensacja [8]. Stosowano metodę Stobera. Wytwarzano nośnik TiO₂ oraz katalizatory: V₂O₅/ TiO₂ ; MoO₃/ TiO₂ ; (V₂O₅-- MoO₃)/ TiO₂. Dla przykładu TiO₂ otrzymywano następująco: 10g Ti(OC₂H₅)₄ mieszano z 50cm³ bezwodnego alkoholu etylowego. Po homogenizacji roztworu powoli, ciągle mieszając, dodawano 10 cm³ NH₄OH. Hydrolizę Ti(OC₂H₅)₄ prowadzono w temperaturze pokojowej przez 24 h. Próbki suszono w temperaturze 100°C i kalcynowano w powietrzu, w temperaturze 400°C przez 3 h. Otrzymane materiały badano metodą XRD. Należy dodać, że rodzaj użytego katalizatora w procesie hydrolizy i stężenia roztworów w sposób istotny wpływają na właściwości uzyskiwanego materiału. Katalizatory (np. MoO₃/TiO₂) preparowano dodając do mieszanin, używanych podczas wytwarzaniu nośnika, sól zawierającą składnik aktywny (np. (NH₄)₆Mo₇O₂₄·4H₂O). Dalej postępowano podobnie jak w wypadku otrzymywania nośników.

3. Rezultaty i dyskusja

Wielkość cząstek (nośników i katalizatorów) oceniono metodą SEM. W wypadku TiO₂ były to agregaty o średnicy 50 nm, utworzone z cząstek o średnicy 10 nm [8]. Po naniesieniu składników aktywnych na nośnik tworzyły się nanometryczne agregaty. Po ich kalcynacji uzyskiwano nanometryczne krystality.

Właściwości nośników i katalizatorów wytworzanych metodą zol-żel zależą od warunków kalcynacji. Podczas kalcynacji sole metali przejściowych przemieniają się w tlenki. Proces ten pokazano na przykładzie termicznego rozkładu (NH₄)₆Mo₇O₂₄·4H₂O. Pomiary wykonano przy szybkościach ogrzewania próbek 5; 10 i 15 K/min. Naważki były rzędu 20 mg. Na rys. 1 przedstawiono zarejestrowane wykresy TG_u, DTG i HF. Unormowane krzywe TG_u uzyskano dzieląc aktualną masę próbki przez masę początkową.

Rys. 1. Wykresy TG_u, DTG i HF w zależności od temperatury. Rozkład (NH₄)₆Mo₇O₂₄·4H₂O w suchym powietrzu.

We wszystkich seriach pomiarów wykresy TG_u kończyły się na tym samym poziomie, przy sumarycznym ubytku masy próbek 18,36% mas. Rozkład (NH₄)₆Mo₇O₂₄·4H₂O zachodził do MoO₃ (teoretyczny ubytek masy 18, 85% mas.) Proces przebiegał w trzech, endotermicznych etapach. W etapie I ubytek masy wynosił 6,74% mas., w etapie II 4,496% mas., a w etapie III 7,125% mas. Analizę wyników przeprowadzono uwzględniając powstające produkty gazowe. Na rys. 2 pokazano wykresy widm masowych NH₃ (m/e = 17) i NO (m/e = 30), uzyskane przy szybkości ogrzewania próbki 5 K/min. Dla ułatwienia analizy naniesiono także wykresy TG_u i DTG. Widać, że NH₃ i NO w niewielkich ilościach wydzielały się w etapach I i II, a głównie w etapie III. Woda wydzielała się w etapach I i II. Należy dodać, że skład fazy gazowej jest istotny dla oceny uciążliwości dla środowiska procesu wytwarzania katalizatora.

Rys. 2. Wykresy TG_u, DTG i wykresy widm masowych NH₃ oraz NO. Rozkład (NH₄)₆Mo₇O₂₄·4H₂O w powietrzu. Szybkość ogrzewania próbki 5 K/min.

Na rys. 3 pokazano widmo XRD próbki po kalcynacji (NH₄)₆Mo₇O₂₄·4H₂O w powietrzu, przy szybkości ogrzewania próbki 5 K/min.

Rys. 3. Widmo XRD próbki po kalcynacji (NH₄)₆Mo₇O₂₄·4H₂O w powietrzu. Wzorzec ICDD 65-0508

Po kalcynacji (NH₄)₆Mo₇O₂₄·4H₂O w powietrzu otrzymano MoO₃.

Na rys. 4 pokazano wykresy TG_u, DTG oraz wykresy widm masowych NH₃ i NO, zarejestrowane podczas kalcynacji surowego katalizatora $(8\%V_2O_5+2\%MoO_3)/TiO_2$. Katalizator ten otrzymano metodą zol-żel. Stosowano (NH₄)₆Mo₇O₂₄·4H₂O i V₂O₅.

Rys. 4. Wykresy TG_u, DTG oraz wykresy widm masowych NH₃ i NO. Kalcynacja surowego katalizatora (8%V₂O₅+2%MoO₃)/TiO₂ w powietrzu. Szybkość ogrzewania próbki 5 K/min.

W tym wypadku, podczas kalcynacji rozkładał się także $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$, dlatego zarejestrowano podobne wykresy widm masowych do pokazanych na rys. 1.

Na rys. 5 przedstawiono widmo XRD próbki tego katalizatora po kalcynacji w powietrzu, w 400°C przez 3h. Wysokie piki dotyczą anatazu, proste odpowiadają wzorcowi V_2O_5 - ICDD 72-0598, a pozostałe piki odpowiadają MoO₃.

Otrzymane katalizatory testowano w reakcji selektywnej redukcji NO_x i spalania wybranych związków organicznych. W tabeli 1 podano wyniki uzyskane podczas selektywnej katalitycznej redukcji NO_x na wytypowanym katalizatorze ($8\%V_2O_5+2\%MoO_3$)/TiO₂.

Rys. 5. Widmo XRD próbki katalizatora (8%V₂O₅+2%MoO₃)/TiO₂ po kalcynacji w powietrzu w 400°C przez 3 h

t	C _{0 NOx}	C _{NOx}	
°C	ppm	ppm	α
223	1043	159	0,847
232	847	106	0,875
260	768	5	0,993
281	519	5	0,990
305	1059	10	0,991
330	1457	5	0,999
360	847	8	0,991
422	2251	53	0,976

Tabela 1. Zestawienie wyników uzyskanych dla katalizatora (8%V₂O₅+2%MoO₃)/TiO₂. Obciążenie gazem 100 m³/(kg h).

W kolumnie drugiej podano stężenie NO_x na wlocie do reaktora, w trzeciej na wylocie z reaktora, po schłodzeniu gazów do temperatury otoczenia, a w ostatniej stopień przemiany tlenków azotu. Katalizator ten wykazywał wysoką aktywność i pracował stabilnie w szerokim zakresie temperatur. Obniżenie stopnia przemiany w temperaturze 422°C jest związane ze spalaniem amoniaku, a nie dezaktywacją katalizatora.

Na rys. 6 pokazano zależność stopni przemiany w reakcji spalania modelowych związków organicznych (metanol i octan n-butylu) na proponowanych do zastosowania katalizatorach 8%V₂O₅/TiO₂, 10%V₂O₅/TiO₂ oraz 8%MoO₃)/TiO₂ i 10%MoO₃)/TiO₂.

Rys. 6. Zależność stopni przemiany metanolu i octanu n-butylu od temperatury. Obciążenie gazem 40m³/(kg h)

Otrzymane metodą zol-żel katalizatory w tym procesie wykazywały wysoką aktywność w stosunkowo niskiej temperaturze, przy dużych obciążeniach gazem.

4. Podsumowanie

Przedstawiono sposób wytwarzania metodą zol-żel katalizatorów V₂O₅/TiO₂; MoO_3/TiO_2 i (V₂O₅+MoO₃)/TiO₂. Jako prekursor TiO₂ stosowano Ti(OC₂H₅)₄. Hydrolizę Ti(OC₂H₅)₄ prowadzono przez 24 h w temperaturze pokojowej. Próbki suszono w 100°C i kalcynowano w powietrzu, w 400°C przez 3 h. Przebieg kalcynacji przeanalizowano na podstawie badań termograwimetrycznych. Skład fazowy katalizatorów identyfikowano metodą XRD, a wielkość cząstek wyznaczono metodą SEM. Badano aktywność katalizatorów w procesie selektywnej redukcji NO_x i w procesie spalania wybranych związków organicznych. Stosowano przepływowy reaktor rurowy. Masa katalizatora wynosiła 0,5 g,

a obciążenie gazem 40-100m³/(kg h). Do zastosowania w procesie selektywnej redukcji NO_x wytypowano katalizator (8%V₂O₅+2%MoO₃)/TiO₂, a w procesie spalania związków organicznych katalizatory: 8%V₂O₅/TiO₂; 10%V₂O₅/TiO₂ oraz 8%MoO₃/TiO₂ i 10%MoO₃/TiO₂. Katalizatory w obu przypadkach pracowały skutecznie, w temperaturze poniżej 300°C.

Literatura

- 1. Towsend A.R., Howarth R.W.: Zdradziecki azot. Świat Nauki, 2010, vol. 3 (223),74-81
- Straszko J.: Katalizatory V₂O₅/TiO₂ procesu selektywnej redukcji tlenków azotu. Praca zbiorowa pod redakcją A.Musialik–Piotrowskiej i J.D. Rutkowskiego pt. Emisje Zagrożenie Ochrona powietrza. Politechnika Wrocławska, Wrocław 2004, 261-266
- Praca zbiorowa.: Materiały II Konferencji Nanotechnologii., Kraków 25-28 czerwiec 2008
- 4. Praca zbiorowa.: Book of Abstracts 2008 E-MRS Falk Meeting & Exibit, Warsaw (Poland) 15th-19th September
- Brinker C.J., Scherer G.W.: So-Gdel Science, The Physics and Chemistry of Sol.-Gel Processing. Academic Press, INC, Boston, San Diego, New York, London, Sydney, Tokyo, Toronto 1990
- 6. Biedunkiewicz A.: Aspekty wytwarzania nanomateriałów ceramicznych typu TiC/C, TiC, TiC-SiC-C oraz Ti(C,N)-Si(C,N)-Si₃N₄ metodą zol-żel. ZUT, Szczecin 2009
- Strzelczak A.: Analiza procesów utleniania wybranych nanokompozytów w suchym powietrzu, praca doktorska, Politechnika Szczecińska, Instytut Chemii i Podstaw Ochrony Środowiska, 2008
- 8. Praca zbiorowa.: Multiprotect, Training Course, Nanoparticles preparation for coatings Technology. Szczecin, Poland, 2007
- Lou J.Ch., Yang H.W., Lin CH.H.: Preparing Copper/Manganese Catalyst by Sol-Gel Process for Catalytic Tuncineration of VOC_s. Aerosol and Air Quality Research, 2009, vol. 9, 385-400
- 10. 10. Cho I. H., Park S. B., Cho S. J., Ryoo R.: Investigation of Pt/γ-Al₂O₃ Catalysis Prepared by Sol-Gel Method. J. Catal., 1998, vol. 173, 295-303.